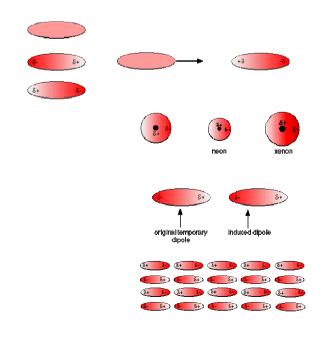
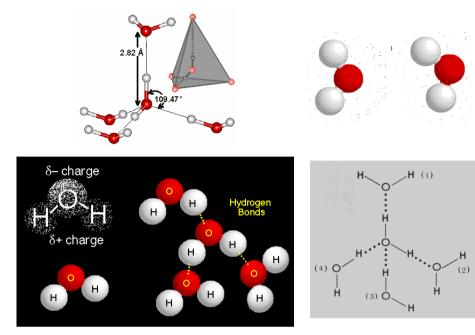
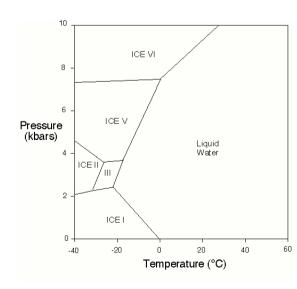
Kap. 3 States of aggregation

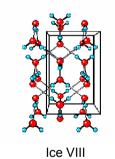

Formula and names Weak chemical bonds Chemical names and formulaes Polymorphism and other transformations Macrostructures, microstructures and nanostructures Structures and microstructures Crystalline solids Noncrystalline solids Partly crystalline solids Nanostrucures The development of microstructures Solidification Processing Defects Point defects in crystals of elements Solid solutions Schottky defects Frenkel defects Nonstoichiometric compounds Edge dislocations Screw dislocations Partial and mixed dislocations Multiplication of dislocations Planar defects Volume defects; precipitates

Chemical bonds

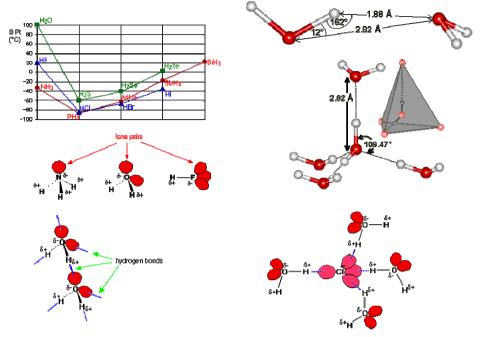

Type of bond	Approximate energy/kJ mol ⁻¹	Species involved
Covalent	350	Atoms with partly filled orbital
Ionic	250	Ions only
Metal	200	Metal atoms
Ion-dipole	15	Ions and polar molecules
Dipole-dipole	2	Stationary polar molecules
Dipole-dipole	0.3	Rotating polar molecules
Dispersion	2	All atoms and molecules
Hydrogen bond	20	N, O or F plus H

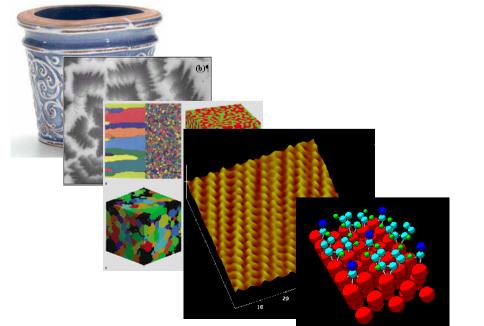
$$V(r) = 4V_{\min}\left[\left(\frac{r_0}{r}\right)^6 - \left(\frac{r_0}{r}\right)^{12}\right]$$


Van der Waals interactions

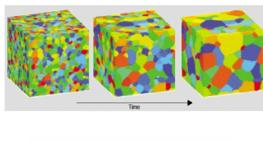


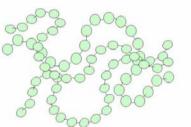
Hydrogen bonds


Polymorphism

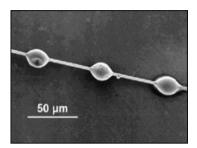


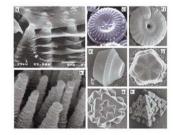
Hydrogen bonds

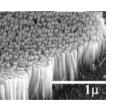


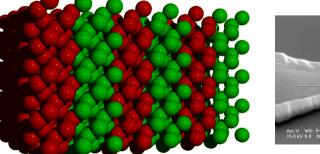

Macrostructure -> Microstructure

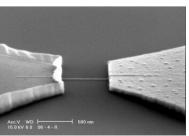
Crystal - amorphous

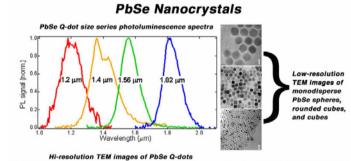


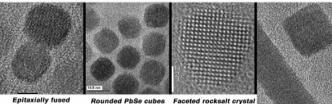


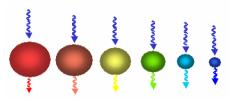

Funtional material




Nanostructures



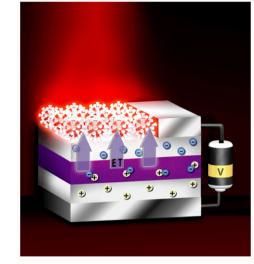


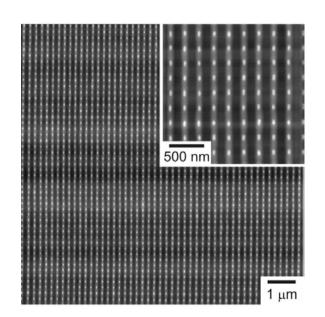

Q-dot pair Size and shape control in PbSe growth is achieved by

Size and shape control in POSe growin is achieved by controlling temperature, reaction time, solvent/stabilizer identity, and precursor concentration. Preparations are based on modifications of: C.B. Murry et al. IBM Journal of Research and Development 45

C. B. Murray, et al. IBM Journal of Research and Development 45, 47 (2001) and B. L. Wehrenberg, C. J. Wang, and P. Guyot-Sionnest J. Phys. Chem. B 106, 10634 (2002)

Emission wavelengths important for the telecommunications industry (1.3 and 1.5 μ m) are easily achieved with Q-dot photoluminescence quantum yields as high as ~80%.


PbSe cube and wire comprising oriented fused cubes



Nanocrystals absorb light then re-emit the light in a different color – the size of the nanocrystal (at the Angstrom scale) determines the color

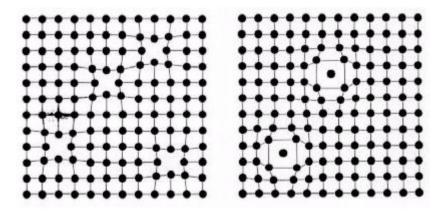
Six different quantum dot solutions are shown excited with a long wave UV lamp

Defects

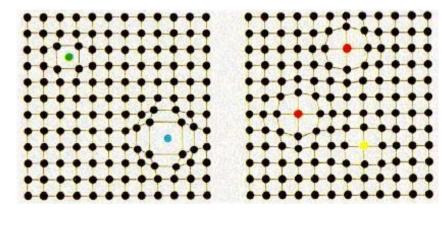
Perfect Crystal

•A perfect crystal with every atom in the correct position does not exist. Only a hypothetical situation at 0 K

•"Crystals are like people: it is the defects in them which tend to make them interesting!" - Colin Humphreys


•Most materials properties are determined by the crystal defects present.

Defects


Usually few defects: $\frac{\text{No. defects}}{\text{No. atoms}} \approx \frac{1}{10^{15}}$ to 0.1 – 1 % If the defect consentration becomes too high, defect-defect interactions occur. Defect clustering Stoichiometric defects, viz. no ateration in composition

Vacancies (empty possitions) Interstitial ("between lattice" points) Wrong type atoms

Vacancies and Interstitials

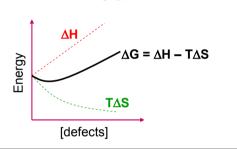
Impurity Atoms

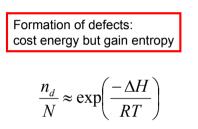
interstitial impurity.

substitutional impurity

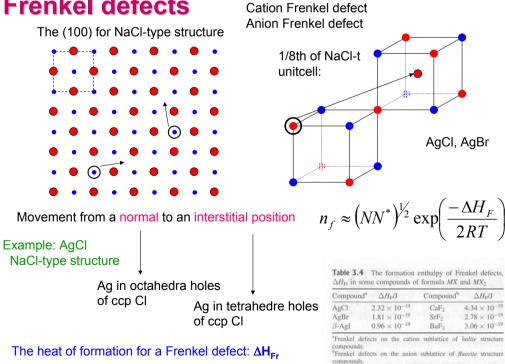
The colored atoms are impurity atoms. They are atoms of a different element.

Cotterill 1985


Thermodynamics


Heat of formation

Configurational entropy $S = k \ln(W)$ Temperature dependency: $\Delta G = \Delta H - T \Delta S$ [defects] incrases with temperature Different types of defects in one phase: each type of defect: $\Delta G_i = \Delta H_i - T \Delta S_i$


ΔH

One dominating type of defects.

Frenkel defects

Schottky defects

The (100) for NaCI-type structure

Alkaline halides	NaCI-type
Earth alkaline halides	NaCI-type
Cs-halides	CsCI-type
BeO	Wurtsite-type

The heat of formation for a Schottky defect: ΔH_s

Equal ammount of anion and cation vacancies

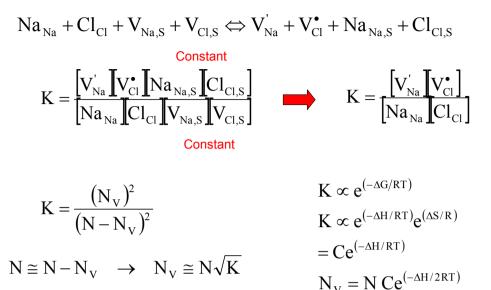
$$\frac{n_d}{N} \approx \exp\!\left(\frac{-\Delta H_s}{2RT}\right)$$

Table 3.3 The formation enthalpy of Schottky defects, $\Delta H_{\rm s}$ in some alkali balida com under all for

Compound	$\Delta H_{\rm S}/{\rm J}$	
LiF	3.74×10^{-19}	
LiCl	3.39×10^{-19}	
LiBr	2.88×10^{-19}	
LiI	1.70×10^{-19}	
NaF	3.87×10^{-19}	
NaCl	3.75×10^{-19}	
NaBr	2.75×10^{-19}	
NaI	2.34×10^{-19}	
KF		
KCI	4.06×10^{-19}	
KBr	3.73×10^{-19}	
KI	2.54×10^{-19}	

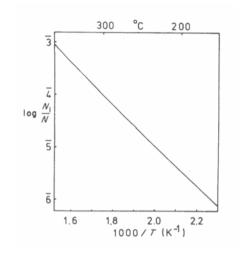
Kroger-Vink notation

Each defect is represented by a combination of three symbols:

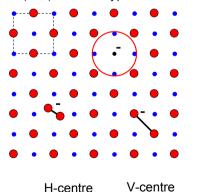

$$X_{i,s,X,Y}^{\bullet(+1),x(0),'(-1)} \quad Na_{Na}^{x} \quad V_{Na}^{'} \quad Ag_{i}^{\bullet}$$

Scottky defect

$$Na_{Na} + Cl_{Cl} + V_{Na,S} + V_{Cl,S} \Leftrightarrow V_{Na}' + V_{Cl}^{\bullet} + Na_{Na,S} + Cl_{Cl,S}$$


Thermodynamics

Scottky defect


Thermodynamics

 $\log_{10}(N_i/N) = \log_{10}(\text{constant}) - (\Delta H/2RT)\log_{10}e$

Colour centre, (alkaline halides)

The (100) for NaCI-type structure

F-centre Colour from F-centre: Dependant om host lattice LiCl 3.1 eV NaCl 2.7 eV KCl 2.2 eV RbCl 2.0 eV

Electron in a box, paramagnetic moment

 $Cl_{Cl}^- + V_{Na}^{S'} + V_{Cl}^{S\bullet} + Na \Leftrightarrow e_{Cl}^- + Na_{Na}^{S,+} + Cl_{Cl}^{S,-}$

Aliovalent substitution

Extrinsic defects arise on doping pure crystals with aliovalent impurities

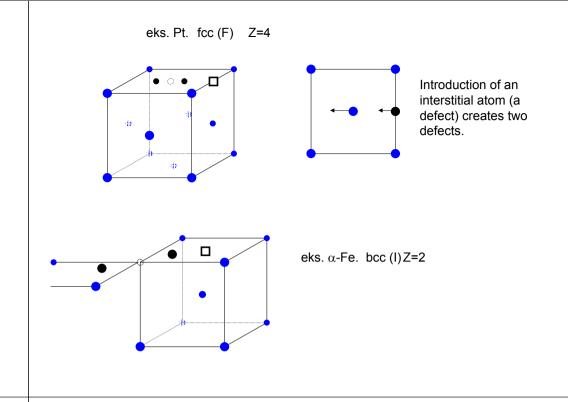
NaCl may be doped with CaCl₂ to give:

 $Na_{1-2x}Ca_{x}V_{Na_{y}}Cl$

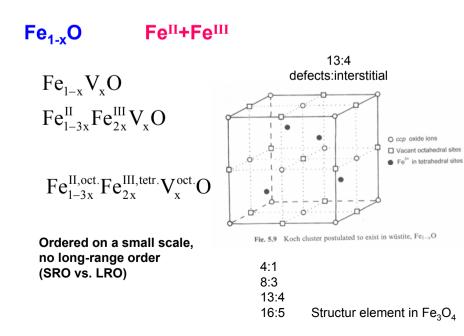
Colour:

MX-perfect MX ordinary defects (intrinsic) Chemical impurities (extrinsic) Radiation Treatment with extra M colourless colourless colour colour colour

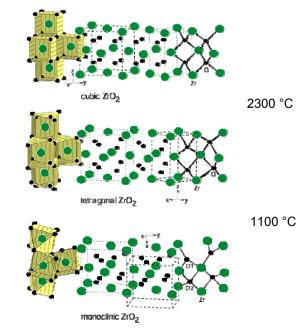
Defect clustering

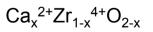

Defects have effective charge

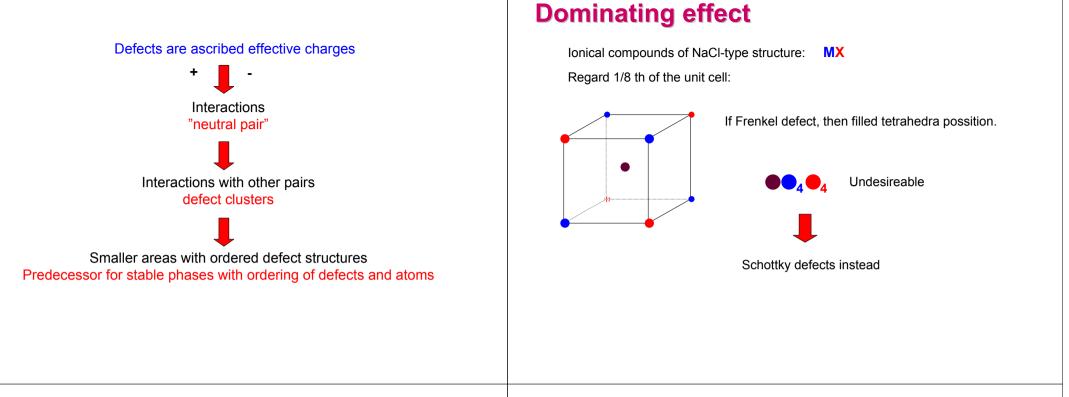
Defects do perturb the host structure


Some interactions	"neutral pairs"

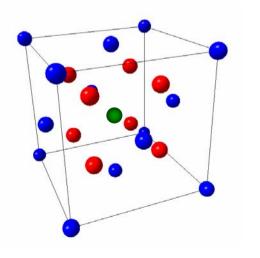
More interactions "defect clustering"


Loads of interaction Stable phases with ordered distribution of defects


Wüstite


ZrO2

Addition of Ca, Y, Ce or similar may stabilise the high temperature forms to lower temperatures.



1100 °C

Dominating effect

Ionical compounds of CaF_2 -type structure: **MX**₂

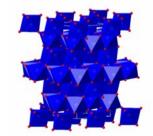
Frenkel

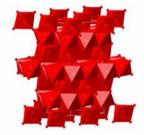
Compound	Str. type	Dominating defect
Alkali-halides	NaCl – t. str.	Schottky
Earth alkali halides	NaCI – t. str.	Schottky
AgCl, AgBr	NaCI – t. str.	Cation Frenkel
Cs-halides, TICI	CsCl – t. str.	Schottky
BeO	würtsite	Schottky
Earthalkali-fluorides, CeO ₂ , ThO ₂	fluorite – t. str.	Anion Frenkel

Solutions

Solution

Intrinsic defects associated with stoichiometric and pure crystals Extrinsic defects associated with dopants or impurities (0.1 - 1 %)


What about dopants > 1% ???


Substitutional solid solution Interstitial solid solution

Aliovalent substitution

Substitutional solid solution

Al₂O₃ corundum

 $(Al_{2-x}Cr_x)O_3$ corundum

Cr₂O₃ corundum

AI³⁺ covalent radius 1.18 Å

Cr³⁺ covalent radius 1.18 Å